Difference between revisions of "Relationship between Airy Ai and modified Bessel K"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{Ai...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
===Theorem===
<strong>[[Relationship between Airy Ai and modified Bessel K|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\mathrm{Ai}(z)=\dfrac{1}{\pi} \sqrt{\dfrac{z}{3}} \mathrm{K}_{\frac{1}{3}} \left( \dfrac{2}{3} x^{\frac{3}{2}} \right),$$
 
$$\mathrm{Ai}(z)=\dfrac{1}{\pi} \sqrt{\dfrac{z}{3}} \mathrm{K}_{\frac{1}{3}} \left( \dfrac{2}{3} x^{\frac{3}{2}} \right),$$
 
where $\mathrm{Ai}$ is the [[Airy Ai]] function and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K$]].
 
where $\mathrm{Ai}$ is the [[Airy Ai]] function and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K$]].
<div class="mw-collapsible-content">
+
===Proof===
<strong>Proof:</strong> █
+
 
</div>
+
[[Category:Theorem]]
</div>
 

Revision as of 08:02, 5 June 2016

Theorem

The following formula holds: $$\mathrm{Ai}(z)=\dfrac{1}{\pi} \sqrt{\dfrac{z}{3}} \mathrm{K}_{\frac{1}{3}} \left( \dfrac{2}{3} x^{\frac{3}{2}} \right),$$ where $\mathrm{Ai}$ is the Airy Ai function and $K_{\nu}$ denotes the modified Bessel $K$.

Proof