Difference between revisions of "Beta"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> $B(x,y)=B(y,x)$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> (i) $B(x+1,y)=\dfrac{x}{x+y} B(x,y)$ <br />
 
(ii) $B(x,y+1)=\dfrac{y}{x+y}B(x,y)$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
[[Partial derivative of beta function]]<br />
 
[[Partial derivative of beta function]]<br />
 
[[Beta in terms of gamma]]<br />
 
[[Beta in terms of gamma]]<br />

Revision as of 05:53, 6 June 2016

The beta function $B$ (note: $B$ is capital $\beta$ in Greek) is defined by the formula $$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1}dt.$$

Properties

Partial derivative of beta function
Beta in terms of gamma
Beta in terms of sine and cosine

Videos

Beta function - Part 1
Beta function
Beta integral function - basic identity
Gamma function - Part 10 - Beta function
Mod-04 Lec-09 Analytic continuation and the gamma function (Part I)
Gamma Function, Transformation of Gamma Function, Beta Function, Transformation of Beta Function
Beta Function - Gamma Function Relation Part 1
Beta Function - Gamma Function Relation Part 2
Beta Integral: Even Powers Of Sine Function

References

Bell. Special Functions
Special functions by Leon Hall