Difference between revisions of "Derivative of cosecant"

From specialfunctionswiki
Jump to: navigation, search
Line 14: Line 14:
  
 
==References==
 
==References==
 +
 +
[[Category:Theorem]]
 +
[[Category:Proven]]

Revision as of 07:43, 8 June 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \csc(z)=- \cot(z)\csc(z),$$ where $\csc$ denotes the cosecant function and $\cot$ denotes the cotangent function.

Proof

Using the product rule and the definitions of cosecant and cotangent, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \csc(z) &= \dfrac{\mathrm{d}}{\mathrm{d}z} \left[ \dfrac{1}{\sin(z)} \right] \\ &= \dfrac{0-\cos(z)}{\sin^2(z)} \\ &= -\csc(z)\cot(z), \end{array}$$ as was to be shown. █

References