Difference between revisions of "Kelvin bei"
From specialfunctionswiki
Line 1: | Line 1: | ||
The $\mathrm{bei}_{\nu}$ function is defined as | The $\mathrm{bei}_{\nu}$ function is defined as | ||
$$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ | $$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ | ||
− | where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J | + | where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J|Bessel function of the first kind]]. |
<div align="center"> | <div align="center"> |
Revision as of 20:09, 9 June 2016
The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{bei}_0$.