Difference between revisions of "Relationship between Airy Ai and modified Bessel K"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
===Theorem===
+
==Theorem==
 
The following formula holds:
 
The following formula holds:
 
$$\mathrm{Ai}(z)=\dfrac{1}{\pi} \sqrt{\dfrac{z}{3}} \mathrm{K}_{\frac{1}{3}} \left( \dfrac{2}{3} x^{\frac{3}{2}} \right),$$
 
$$\mathrm{Ai}(z)=\dfrac{1}{\pi} \sqrt{\dfrac{z}{3}} \mathrm{K}_{\frac{1}{3}} \left( \dfrac{2}{3} x^{\frac{3}{2}} \right),$$
 
where $\mathrm{Ai}$ is the [[Airy Ai]] function and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K$]].
 
where $\mathrm{Ai}$ is the [[Airy Ai]] function and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K$]].
===Proof===
+
 
 +
==Proof==
 +
 
 +
==References==
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 23:07, 9 June 2016

Theorem

The following formula holds: $$\mathrm{Ai}(z)=\dfrac{1}{\pi} \sqrt{\dfrac{z}{3}} \mathrm{K}_{\frac{1}{3}} \left( \dfrac{2}{3} x^{\frac{3}{2}} \right),$$ where $\mathrm{Ai}$ is the Airy Ai function and $K_{\nu}$ denotes the modified Bessel $K$.

Proof

References