Difference between revisions of "Kelvin ber"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
 
File:Kelvinber,n=2plot.png|Graph of $\mathrm{ber}_2$.
 
File:Kelvinber,n=2plot.png|Graph of $\mathrm{ber}_2$.
 
File:Complexkelvinber,n=0plot.png|[[Domain coloring]] of $\mathrm{ber}_0$.
 
File:Complexkelvinber,n=0plot.png|[[Domain coloring]] of $\mathrm{ber}_0$.
 +
File:Complexkelvinber,n=1plot.png|[[Domain coloring]] of $\mathrm{ber}_1$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>

Revision as of 00:38, 11 June 2016

The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.

References

[1]

Kelvin functions