Difference between revisions of "Q-cos sub q"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
__NOTOC__
 
The function $\cos_q$ is defined by
 
The function $\cos_q$ is defined by
 
$$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2}=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k}}{(q;q)_{2k}},$$
 
$$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2}=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k}}{(q;q)_{2k}},$$
Line 4: Line 5:
  
 
=Properties=
 
=Properties=
{{:q-Euler formula for e sub q}}
+
[[q-Euler formula for e sub q]]<br />
  
 
=References=
 
=References=

Revision as of 21:20, 4 July 2016

The function $\cos_q$ is defined by $$\cos_q(z)=\dfrac{e_q(iz)+e_q(-iz)}{2}=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k}}{(q;q)_{2k}},$$ where $e_q$ denotes the $q$-exponential $e$ and $(q;q)_{2k}$ denotes the $q$-Pochhammer symbol.

Properties

q-Euler formula for e sub q

References

[1]