Difference between revisions of "Jacobi theta 3"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$\vartheta_3(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} q^{k^2} \cos(2kz),$$ | $$\vartheta_3(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} q^{k^2} \cos(2kz),$$ | ||
where $\cos$ denotes the [[cosine]] function. | where $\cos$ denotes the [[cosine]] function. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complexjacobitheta3,q=0.5plot.png|Domain coloring of $\vartheta_3 \left(z,\frac{1}{2} \right)$. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= |
Revision as of 18:42, 5 July 2016
Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_3$ function is defined by $$\vartheta_3(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} q^{k^2} \cos(2kz),$$ where $\cos$ denotes the cosine function.
Properties
Squares of theta relation for Jacobi theta 1 and Jacobi theta 4
Squares of theta relation for Jacobi theta 2 and Jacobi theta 4
Squares of theta relation for Jacobi theta 3 and Jacobi theta 4
Squares of theta relation for Jacobi theta 4 and Jacobi theta 4
Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3
Derivative of Jacobi theta 1 at 0
Logarithm of quotient of Jacobi theta 3 equals a sum of sines
See also
Jacobi theta 1
Jacobi theta 2
Jacobi theta 4
References
- 1960: Earl David Rainville: Special Functions ... (previous) ... (next): $164. (3)$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $16.27.3$