Difference between revisions of "Jacobi theta 4"
From specialfunctionswiki
Line 5: | Line 5: | ||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> | ||
+ | File:Jacobitheta4,q=0.5plot.png|Graph of $\vartheta_4(z,\frac{1}{2})$. | ||
File:Complexjacobitheta4,q=0.5plot.png|Domain coloring of $\vartheta_4 \left(z,\frac{1}{2} \right)$. | File:Complexjacobitheta4,q=0.5plot.png|Domain coloring of $\vartheta_4 \left(z,\frac{1}{2} \right)$. | ||
</gallery> | </gallery> |
Revision as of 19:00, 5 July 2016
Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_4$ function is defined by $$\vartheta_4(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} (-1)^k q^{k^2} \cos(2kz),$$ where $\cos$ denotes the cosine function.
Properties
Squares of theta relation for Jacobi theta 1 and Jacobi theta 4
Squares of theta relation for Jacobi theta 2 and Jacobi theta 4
Squares of theta relation for Jacobi theta 3 and Jacobi theta 4
Squares of theta relation for Jacobi theta 4 and Jacobi theta 4
Sum of fourth powers of Jacobi theta 2 and Jacobi theta 4 equals fourth power of Jacobi theta 3
Derivative of Jacobi theta 1 at 0
Logarithm of a quotient of Jacobi theta 4 equals a sum of sines
See also
Jacobi theta 1
Jacobi theta 2
Jacobi theta 3
References
- 1960: Earl David Rainville: Special Functions ... (previous) ... (next): $164. (4)$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $16.27.4$