Difference between revisions of "Takagi function"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Takagi function is continuous]]<br />
<strong>Theorem:</strong> The Takagi function is [[continuous]] on $\mathbb{R}$.
+
[[Takagi function is nowhere differentiable]]<br />
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The Takagi function is [[nowhere differentiable]] on $\mathbb{R}$.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=See Also=
 
=See Also=

Revision as of 03:14, 6 July 2016

The Takagi function (also called the blancmange function) is defined by $$\mathrm{takagi}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}}(2^n x)}{2^n}.$$

Properties

Takagi function is continuous
Takagi function is nowhere differentiable

See Also

van der Waerden function

References

[1]
[2]