Difference between revisions of "Van der Waerden function"
From specialfunctionswiki
Line 11: | Line 11: | ||
</div> | </div> | ||
=Properties= | =Properties= | ||
− | + | [[van der Waerden function is continuous]] <br /> | |
− | + | [[van der Waerden function is nowhere differentiable]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
=See Also= | =See Also= |
Revision as of 03:16, 6 July 2016
Define $s(x)=\inf_{n \in \mathbb{Z}} |x-n|$ (i.e. the distance from $x$ to the set of integers $\mathbb{Z}$). The van der Waerden function is defined by the formula $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s \left(10^k x \right)}{10^k}.$$ Note: to calculate $s(x)$ you may use $s(x)=\min \left(2^n x - \lfloor 2^n x \rfloor, \lceil 2^n x \rceil - x \right)$, where $\lfloor \cdot \rfloor$ denotes the floor function and $\lceil \cdot \rceil$ denotes the ceiling function.
Properties
van der Waerden function is continuous
van der Waerden function is nowhere differentiable