Difference between revisions of "Van der Waerden function"

From specialfunctionswiki
Jump to: navigation, search
 
Line 18: Line 18:
 
=References=
 
=References=
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br />
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf] <br />
 +
 +
{{:Continuous nowhere differentiable functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 03:33, 6 July 2016

The van der Waerden function $V \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined by the formula $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}} \left(10^k x \right)}{10^k},$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.


Properties

van der Waerden function is continuous
van der Waerden function is nowhere differentiable

See Also

Takagi function

References

[1]

Continuous nowhere differentiable functions