Difference between revisions of "L(n)=F(n+1)+F(n-1)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$L(n)=F(n+1)+F(n-1),$$ where $L(n)$ denotes a Lucas number and $F(n)$ denotes a Fibonacci numbers|Fibonacci numbe...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n+1)L(n-1)-L(n)^2=5(-1)^(n+1)|next=findme}}  
+
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=L(n+1)L(n-1)-L(n)^2=5(-1)^(n+1)|next=F(2n+1)=F(n+1)^2+F(n)^2}}  
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 00:28, 25 May 2017

Theorem

The following formula holds: $$L(n)=F(n+1)+F(n-1),$$ where $L(n)$ denotes a Lucas number and $F(n)$ denotes a Fibonacci number.

Proof

References