Difference between revisions of "(z/(1-q))2Phi1(q,q;q^2;z)=Sum z^k/(1-q^k)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\dfrac{z}{1-z} {}_2\phi_1(q,q;q^2;z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{1-q^k},$$ where ${}_2\phi_1$ denotes basic hyp...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=1Phi0(a;;z)1Phi0(b;;az)=1Phi0(ab;;z)|next= | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=1Phi0(a;;z)1Phi0(b;;az)=1Phi0(ab;;z)|next=2Phi1(q,-1;-q;z)=1+2Sum z^k/(1+q^k)}}: $4.8 (6)$ (typo in text: text has sum beginning at $k=0$) |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 21:50, 17 June 2017
Theorem
The following formula holds: $$\dfrac{z}{1-z} {}_2\phi_1(q,q;q^2;z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{1-q^k},$$ where ${}_2\phi_1$ denotes basic hypergeometric phi.
Proof
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.8 (6)$ (typo in text: text has sum beginning at $k=0$)