Difference between revisions of "(z/(1-q))2Phi1(q,q;q^2;z)=Sum z^k/(1-q^k)"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\dfrac{z}{1-z} {}_2\phi_1(q,q;q^2;z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{1-q^k},$$
+
$$\dfrac{z}{1-q} {}_2\phi_1(q,q;q^2;z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{1-q^k},$$
 
where ${}_2\phi_1$ denotes [[basic hypergeometric phi]].
 
where ${}_2\phi_1$ denotes [[basic hypergeometric phi]].
  

Revision as of 21:55, 17 June 2017

Theorem

The following formula holds: $$\dfrac{z}{1-q} {}_2\phi_1(q,q;q^2;z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{1-q^k},$$ where ${}_2\phi_1$ denotes basic hypergeometric phi.

Proof

References