Difference between revisions of "Euler-Mascheroni constant"

From specialfunctionswiki
Jump to: navigation, search
Line 24: Line 24:
 
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Reciprocal gamma written as an infinite product|next=findme}}: §1.1 (4)
 
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Reciprocal gamma written as an infinite product|next=findme}}: §1.1 (4)
 
* {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Harmonic number}}: $7.(1)$
 
* {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=Harmonic number}}: $7.(1)$
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Limit of x^a log(x)=0|next=x/(1+x) < log(1+x)}}: $4.1.32$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Limit of x^a log(x)=0|next=x/(1+x) less than log(1+x)}}: $4.1.32$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Reciprocal gamma written as an infinite product|next=findme}}: 6.1.3
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Reciprocal gamma written as an infinite product|next=findme}}: 6.1.3

Revision as of 19:47, 25 June 2017

The Euler-Mascheroni constant is the number $\gamma$ defined by the formula $$\gamma = \lim_{n \rightarrow \infty} H_n-\log(n) = 0.577215664901532 \ldots,$$ where $H_n$ denotes the $n$th harmonic number.

Properties

The Euler-Mascheroni constant exists
Reciprocal gamma written as an infinite product
Exponential integral Ei series

Further properties

The Euler-Mascheroni constant appears in the definition of...

  1. the hyperbolic cosine integral
  2. the Barnes G function

See Also

Meissel-Mertens constant

External links

Collection of formulae for Euler's constant g

References