Difference between revisions of "Dilogarithm"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 21: Line 21:
 
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=Relationship between dilogarithm and log(1-z)/z}}: $\S 1.11.1 (22)$
 
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=Relationship between dilogarithm and log(1-z)/z}}: $\S 1.11.1 (22)$
 
* {{BookReference|Dilogarithms and Associated Functions|1958|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
 
* {{BookReference|Dilogarithms and Associated Functions|1958|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=findme}}: $27.7.2$ (<i>note: writes $\mathrm{Li}_2$ as $\sum_{k=1}^{\infty} \frac{(-1)^k(x-1)^k}{k^2}$ for $0 \leq x \leq 2$, equivalent to our definition on $\mathbb{R}$</i>)
 
* {{BookReference|Polylogarithms and Associated Functions|1981|ed=2nd|edpage=Second Edition|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
 
* {{BookReference|Polylogarithms and Associated Functions|1981|ed=2nd|edpage=Second Edition|Leonard Lewin|next=Taylor series of log(1-z)}}: $(1.1)$
 
* {{BookReference|Structural Properties of Polylogarithms|1991|Leonard Lewin|next=Relationship between dilogarithm and log(1-z)/z}}: $(1.1)$
 
* {{BookReference|Structural Properties of Polylogarithms|1991|Leonard Lewin|next=Relationship between dilogarithm and log(1-z)/z}}: $(1.1)$

Revision as of 02:26, 21 December 2017

The dilogarithm function $\mathrm{Li}_2$ is defined for $|z| \leq 1$ by $$\mathrm{Li}_2(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{k^2},$$ which is a special case of the polylogarithm.

Properties

Relationship between dilogarithm and log(1-z)/z
Relationship between Li 2(1),Li 2(-1), and pi
Li 2(1)=pi^2/6
Relationship between Li 2(-1/x),Li 2(-x),Li 2(-1), and log^2(x)
Derivative of Li 2(-1/x)
Li2(z)=zPhi(z,2,1)
Li 2(z)=-Li 2(1/z)-(1/2)(log z)^2 + i pi log(z) + pi^2/3

References

(page 31)
The Dilogarithm function
[1]

Logarithm and friends