Difference between revisions of "Z/(1-sqrt(q))2Phi1(q,sqrt(q);sqrt(q^3);z)=Sum z^k/(1-q^(k-1/2))"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\dfrac{z}{1-\sqrt{q}} {}_2\phi_1 \left(q,\sqrt{q};\sqrt{q^3};z \right) = \displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{1-q^{k-\frac{1...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953| | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=2Phi1(q,-1;-q;z)=1+2Sum z^k/(1+q^k)|next=findme}}: $4.8 (8)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 23:27, 3 March 2018
Theorem
The following formula holds: $$\dfrac{z}{1-\sqrt{q}} {}_2\phi_1 \left(q,\sqrt{q};\sqrt{q^3};z \right) = \displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{1-q^{k-\frac{1}{2}}},$$ where ${}_2\phi_1$ denotes basic hypergeometric phi.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.8 (8)$