Polygamma

From specialfunctionswiki
Revision as of 19:51, 11 June 2016 by Tom (talk | contribs)
Jump to: navigation, search

The polygamma function of order $m$, $\psi^{(m)}(z)$, is defined by the formula $$\psi^{(m)}(z) = \dfrac{\mathrm{d}^{m+1}}{\mathrm{d}z^{m+1}} \log \Gamma(z),$$ where $\log \Gamma$ denotes the loggamma function. The digamma function $\psi$ is the function $\psi^{(0)}(z)$ and the trigamma function is $\psi^{(1)}(z)$.

Properties

Integral representation of polygamma
Integral representation of polygamma 2
Polygamma recurrence relation
Polygamma reflection formula
Polygamma series representation
Relation between polygamma and Hurwitz zeta

See Also

Digamma
Trigamma

References