Hurwitz zeta
From specialfunctionswiki
The Hurwitz zeta function is a generalization of the Riemann zeta function defined initially for $\mathrm{Re}(s)>1$ and $\mathrm{Re}(a)>0$ by $$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$
Properties
Hurwitz zeta absolute convergence
Relationship between Hurwitz zeta and gamma function
Relation between polygamma and Hurwitz zeta
Bernoulli polynomial and Hurwitz zeta
Catalan's constant using Hurwitz zeta