Lerch zeta function
From specialfunctionswiki
The Lerch zeta function is defined by $$L(\lambda,\alpha,z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{e^{2i \pi \lambda k}}{(n+\alpha)^z}.$$
Properties
Relationship between Lerch transcendent and Lerch zeta
References
The Lerch zeta function III. Polylogarithms and special values