Absolute convergence of secant zeta function
From specialfunctionswiki
Theorem
The series defining the secant zeta function $\psi_s(z)$ converges absolutely in the following cases:
- when $z=\dfrac{p}{q}$ with $q$ odd, $s>1$
- when $z$ algebraic irrational number and $s >2$
- when $z$ is algebraic irrational and $s=2$.
Proof
References
- Matilde Lalín: Secant zeta functions (2014): Theorem 1.