L(n)=F(n+1)+F(n-1)
From specialfunctionswiki
Theorem
The following formula holds: $$L(n)=F(n+1)+F(n-1),$$ where $L(n)$ denotes a Lucas number and $F(n)$ denotes a Fibonacci number.
The following formula holds: $$L(n)=F(n+1)+F(n-1),$$ where $L(n)$ denotes a Lucas number and $F(n)$ denotes a Fibonacci number.