Difference between revisions of "Chebyshev T"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
Chebyshev polynomials of the first kind are [[orthogonal polynomials]] defined by
+
Chebyshev polynomials of the first kind are [[orthogonal polynomials]] defined for $n=0,1,2,\ldots$ by
$$T_n(x) = \cos(n \mathrm{arccos}(x)).$$
+
$$T_n(x) = \cos(n \mathrm{arccos}(x)),$$
 +
where $\cos$ denotes [[cosine]] and $\mathrm{arccos}$ denotes [[arccos]].
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[T_{n+1}(x)-2xT_n(x)+T_{n-1}(x)=0]]<br />
<strong>Theorem:</strong> The polynomials $T_n(x)$ and $U_n(x)$ are two independent solutions of the following equation, called Chebyshev's equation:
 
$$(1-x^2)\dfrac{d^2y}{dx^2}-x\dfrac{dy}{dx}+n^2y=0.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The following formula holds:
 
$$T_{n+1}(x)-2xT_n(x)+T_{n-1}(x)=0.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">

Revision as of 22:12, 19 December 2017

Chebyshev polynomials of the first kind are orthogonal polynomials defined for $n=0,1,2,\ldots$ by $$T_n(x) = \cos(n \mathrm{arccos}(x)),$$ where $\cos$ denotes cosine and $\mathrm{arccos}$ denotes arccos.

Properties

[[T_{n+1}(x)-2xT_n(x)+T_{n-1}(x)=0]]

Theorem (Orthogonality): The following formula holds: $$\int_{-1}^1 \dfrac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll} 0 &; m \neq n \\ \dfrac{\pi}{2} &; m=n\neq 0 \\ \pi &; m=n=0. \end{array} \right.$$

Proof:

Theorem

The following formula holds for $n \in \{0,1,2,\ldots\}$: $$T_n(x) = {}_2F_1 \left( -n,n ; \dfrac{1}{2}; \dfrac{1-x}{2} \right),$$ where $T_n$ denotes a Chebyshev polynomial of the first kind and ${}_2F_1$ denotes the hypergeometric pFq.

Proof

References

Theorem

The following formula holds for $n \in \{1,2,3,\ldots\}$: $$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda},$$ where $T_n$ denotes a Chebyshev polynomial of the first kind and $C_n^{\lambda}$ denotes a Gegenbauer C polynomial.

Proof

References

Orthogonal polynomials