Difference between revisions of "Gudermannian"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The Gudermannian $\mathrm{gd}$ is defined for $x \in \mathbb{R}$ by the formula
 
The Gudermannian $\mathrm{gd}$ is defined for $x \in \mathbb{R}$ by the formula
 
$$\mathrm{gd}(x) = \displaystyle\int_0^x \dfrac{1}{\cosh t} dt$$
 
$$\mathrm{gd}(x) = \displaystyle\int_0^x \dfrac{1}{\cosh t} dt$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Gudermannianplot.png|Graph of $\mathrm{gd}$.
 +
File:Domcolgudermannian.png|[[Domain coloring]] of $\mathrm{gd}$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 23:08, 25 August 2015

The Gudermannian $\mathrm{gd}$ is defined for $x \in \mathbb{R}$ by the formula $$\mathrm{gd}(x) = \displaystyle\int_0^x \dfrac{1}{\cosh t} dt$$

Properties

Theorem

The following formula holds: $$\sin(\mathrm{gd}(x))=\tanh(x),$$ where $\sin$ denotes the sine, $\mathrm{gd}$ denotes the Gudermannian, and $\tanh$ denotes the hyperbolic tangent.

Proof

References

Theorem

The following formula holds: $$\cos(\mathrm{gd}(x))=\mathrm{sech}(x),$$ where $\cos$ denotes the cosine, $\mathrm{gd}$ denotes the Gudermannian, and $\mathrm{sech}$ denotes the hyperbolic secant.

Proof

References

Theorem

The following formula holds: $$\tan(\mathrm{gd}(x))=\sinh(x),$$ where $\tan$ denotes tangent, $\mathrm{gd}$ denotes the Gudermannian, and $\sinh$ denotes the hyperbolic sine.

Proof

References

Theorem

The following formula holds: $$\csc(\mathrm{gd}(x))=\mathrm{coth}(x),$$ where $\csc$ is the cosecant, $\mathrm{gd}$ is the Gudermannian, and $\mathrm{coth}$ is the hyperbolic cotangent.

Proof

References

Theorem

The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secant, $\mathrm{gd}$ denotes the Gudermannian, and $\cosh$ denotes the hyperbolic cosine.

Proof

References

Theorem

The following formula holds: $$\cot(\mathrm{gd}(x))=\mathrm{csch}(x),$$ where $\cot$ is the cotangent, $\mathrm{gd}$ is the Gudermannian, and $\mathrm{csch}$ is the hyperbolic cosecant.

Proof

References

<center>$\ast$-integral functions
</center>