Difference between revisions of "Kelvin kei"
From specialfunctionswiki
Line 10: | Line 10: | ||
<center>{{:Kelvin functions footer}}</center> | <center>{{:Kelvin functions footer}}</center> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:37, 24 May 2016
The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}_{\nu}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.
Domain coloring of $\mathrm{kei}_0$.