Difference between revisions of "Kelvin ker"

From specialfunctionswiki
Jump to: navigation, search
Line 12: Line 12:
 
[http://mathworld.wolfram.com/Ker.html] <br/>
 
[http://mathworld.wolfram.com/Ker.html] <br/>
  
<center>{{:Kelvin functions footer}}</center>
+
{{:Kelvin functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 00:33, 11 June 2016

The $\mathrm{ker}_{\nu}$ function is defined as $$\mathrm{ker}_{\nu}(z)=\mathrm{Re} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Re}$ denotes the real part of a complex number and $K_{\nu}$ denotes the modified Bessel function $K_{\nu}$.

References

[1]

Kelvin functions