Difference between revisions of "Kelvin ker"

From specialfunctionswiki
Jump to: navigation, search
Line 12: Line 12:
  
 
=References=
 
=References=
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Kelvin bei|next=Kelvin kei}}: $\S 7.2.3 (19)$
+
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Kelvin bei|next=Kelvin kei}}: $\S 7.2.3 (20)$
  
 
{{:Kelvin functions footer}}
 
{{:Kelvin functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 22:20, 8 July 2016

The $\mathrm{ker}_{\nu}$ function is defined as $$\mathrm{ker}_{\nu}(z)=\mathrm{Re} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Re}$ denotes the real part of a complex number and $K_{\nu}$ denotes the modified Bessel function $K_{\nu}$.

Properties

References

Kelvin functions