Difference between revisions of "Fibonacci numbers"

From specialfunctionswiki
Jump to: navigation, search
(Videos)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
The Fibonacci sequence numbers $F_n$ are defined by the recurrence
+
The Fibonacci sequence, $F_n$, is the solution of the following initial value problem:
$$F_{n+2}=F_n+F_{n+1}, \quad F(0)=0, F(1)=1.$$
+
$$F_{n+2}=F_n+F_{n+1}, \quad F_0=0, F_1=1.$$
  
 
=Properties=
 
=Properties=

Revision as of 00:21, 24 May 2017

The Fibonacci sequence, $F_n$, is the solution of the following initial value problem: $$F_{n+2}=F_n+F_{n+1}, \quad F_0=0, F_1=1.$$

Properties

Limit of quotient of consecutive Fibonacci numbers
Binet's formula
Sum of Fibonacci numbers
Sum of odd indexed Fibonacci numbers
Sum of even indexed Fibonacci numbers
Sum of squares of Fibonacci numbers
Catalan's identity for the Fibonacci sequence

Videos

Doodling in Math: Spirals, Fibonacci, and Being a Plant (1 of 3) (21 December 2011)
The Golden Ratio & Fibonacci Numbers: Fact versus Fiction (11 December 2012)
Fibonacci mystery (18 September 2013)

See also

Fibonacci zeta function
Golden ratio
Reciprocal Fibonacci constant
Lucas numbers

External links

The Fibonacci Quarterly
"What interesting properties of the Fibonacci sequence can I share when introducing sequences?"

References