Difference between revisions of "Limit of quotient of consecutive Fibonacci numbers"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F_{n+1}}{F_n}=\phi,$$ where $F_n$ denotes the Fibonacci sequence and $\phi$ deno...")
 
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F_{n+1}}{F_n}=\phi,$$
 
$$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F_{n+1}}{F_n}=\phi,$$
where $F_n$ denotes the [[Fibonacci sequence]] and $\phi$ denotes the [[golden ratio]].
+
where $F_n$ denotes the $n$th [[Fibonacci numbers|Fibonacci number]] and $\phi$ denotes the [[golden ratio]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
* {{PaperReference|Sur la série des inverse de nombres de Fibonacci|1899|Edmund Landau|prev=Fibonacci sequence|next=Reciprocal Fibonacci constant}}
+
* {{PaperReference|Sur la série des inverse de nombres de Fibonacci|1899|Edmund Landau|prev=Fibonacci numbers|next=Reciprocal Fibonacci constant}}
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 00:27, 24 May 2017

Theorem

The following formula holds: $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F_{n+1}}{F_n}=\phi,$$ where $F_n$ denotes the $n$th Fibonacci number and $\phi$ denotes the golden ratio.

Proof

References