Difference between revisions of "Sum of squares of Fibonacci numbers"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\displaystyle\sum_{k=1}^n F_k^2 = F_n F_{n+1},$$ where $F_k$ denotes a Fibonacci number. ==Proof== ==Refere...")
 
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$\displaystyle\sum_{k=1}^n F_k^2 = F_n F_{n+1},$$
 
$$\displaystyle\sum_{k=1}^n F_k^2 = F_n F_{n+1},$$
where $F_k$ denotes a [[Fibonacci sequence|Fibonacci number]].
+
where $F_k$ denotes the $k$th [[Fibonacci numbers|Fibonacci number]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
 +
* {{PaperReference|A Primer on the Fibonacci Sequence Part I|1963|S.L. Basin|author2=V.E. Hoggatt, Jr.|prev=F(n+m+1)=F(n+1)F(m+1)+F(n)F(m)|next=L(n)^2-5F(n)^2=4(-1)^n}}
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 00:35, 25 May 2017

Theorem

The following formula holds: $$\displaystyle\sum_{k=1}^n F_k^2 = F_n F_{n+1},$$ where $F_k$ denotes the $k$th Fibonacci number.

Proof

References