Difference between revisions of "Limit of quotient of consecutive Fibonacci numbers"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F_{n+1}}{F_n}=\phi,$$ where $F_n$ denotes the Fibonacci sequence and $\phi$ deno...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
The following formula holds: | The following formula holds: | ||
− | $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{ | + | $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F(n+1)}{F(n)}=\varphi,$$ |
− | where $ | + | where $F(n)$ denotes the $n$th [[Fibonacci numbers|Fibonacci number]] and $\varphi$ denotes the [[golden ratio]]. |
==Proof== | ==Proof== | ||
==References== | ==References== | ||
− | * {{PaperReference|Sur la série des inverse de nombres de Fibonacci|1899|Edmund Landau|prev=Fibonacci | + | * {{PaperReference|Sur la série des inverse de nombres de Fibonacci|1899|Edmund Landau|prev=Fibonacci numbers|next=Reciprocal Fibonacci constant}} |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 23:53, 6 June 2017
Theorem
The following formula holds: $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F(n+1)}{F(n)}=\varphi,$$ where $F(n)$ denotes the $n$th Fibonacci number and $\varphi$ denotes the golden ratio.