Difference between revisions of "Pythagorean identity for coth and csch"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\mathrm{coth}^2(z)-\mathrm{csch}^2(z)=1,$$ where $\mathrm{coth}$ denotes hyperbolic cotangent and $\mathrm{csch}$ denotes [...") |
|||
Line 8: | Line 8: | ||
==References== | ==References== | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for tanh and sech|next=Sum of cosh and sinh}}: $4.5.18$ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for tanh and sech|next=Sum of cosh and sinh}}: $4.5.18$ | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 22:29, 21 October 2017
Theorem
The following formula holds: $$\mathrm{coth}^2(z)-\mathrm{csch}^2(z)=1,$$ where $\mathrm{coth}$ denotes hyperbolic cotangent and $\mathrm{csch}$ denotes hyperbolic cosecant.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.18$