Difference between revisions of "Pythagorean identity for coth and csch"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\mathrm{coth}^2(z)-\mathrm{csch}^2(z)=1,$$ where $\mathrm{coth}$ denotes hyperbolic cotangent and $\mathrm{csch}$ denotes [...")
 
 
Line 8: Line 8:
 
==References==
 
==References==
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for tanh and sech|next=Sum of cosh and sinh}}: $4.5.18$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for tanh and sech|next=Sum of cosh and sinh}}: $4.5.18$
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 22:29, 21 October 2017

Theorem

The following formula holds: $$\mathrm{coth}^2(z)-\mathrm{csch}^2(z)=1,$$ where $\mathrm{coth}$ denotes hyperbolic cotangent and $\mathrm{csch}$ denotes hyperbolic cosecant.

Proof

References