Difference between revisions of "Kelvin kei"
From specialfunctionswiki
(Created page with "The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} K_{\nu} \left( x e^{\frac{\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the im...") |
|||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The $\mathrm{ | + | The $\mathrm{kei}_{\nu}$ function is defined as |
− | $$\mathrm{ | + | $$\mathrm{kei}_{\nu}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ |
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]]. | where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]]. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Complexkelvinkei,n=0plot.png|[[Domain coloring]] of $\mathrm{kei}_0$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | =Properties= | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Higher Transcendental Functions Volume II|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Kelvin ker|next=findme}}: $\S 7.2.3 (20)$ | ||
+ | |||
+ | {{:Kelvin functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 05:42, 4 March 2018
The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}_{\nu}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.
Domain coloring of $\mathrm{kei}_0$.
Properties
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume II ... (previous) ... (next): $\S 7.2.3 (20)$