Difference between revisions of "Darboux function"
From specialfunctionswiki
(Created page with "The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function. =Properties= <...") |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
where $\sin$ denotes the [[sine]] function. | where $\sin$ denotes the [[sine]] function. | ||
− | + | <div align="center"> | |
− | <div | + | <gallery> |
− | < | + | File:Darbouxplot.png|Plot of $D(x)$ on $[0,5]$. |
− | + | </gallery> | |
− | |||
− | </ | ||
</div> | </div> | ||
− | + | =Properties= | |
− | < | + | [[Darboux function is continuous]]<br /> |
− | + | [[Darboux function is nowhere differentiable]]<br /> | |
− | |||
− | |||
− | </ | ||
=References= | =References= | ||
− | [ | + | * {{BookReference|Continuous Nowhere Differentiable Functions|2003|Johan Thim|prev=findme|next=Schwarz function}} $\S 3.5$, pg. 28 |
+ | |||
+ | {{:Continuous nowhere differentiable functions footer}} | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:02, 25 June 2017
The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.
Properties
Darboux function is continuous
Darboux function is nowhere differentiable
References
- 2003: Johan Thim: Continuous Nowhere Differentiable Functions ... (previous) ... (next) $\S 3.5$, pg. 28