Difference between revisions of "Darboux function"
From specialfunctionswiki
(4 intermediate revisions by the same user not shown) | |||
Line 10: | Line 10: | ||
=Properties= | =Properties= | ||
− | + | [[Darboux function is continuous]]<br /> | |
− | + | [[Darboux function is nowhere differentiable]]<br /> | |
− | |||
− | |||
− | |||
− | </ | ||
− | + | =References= | |
− | + | * {{BookReference|Continuous Nowhere Differentiable Functions|2003|Johan Thim|prev=findme|next=Schwarz function}} $\S 3.5$, pg. 28 | |
− | |||
− | |||
− | |||
− | |||
− | + | {{:Continuous nowhere differentiable functions footer}} | |
− | [ | + | |
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:02, 25 June 2017
The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.
Properties
Darboux function is continuous
Darboux function is nowhere differentiable
References
- 2003: Johan Thim: Continuous Nowhere Differentiable Functions ... (previous) ... (next) $\S 3.5$, pg. 28