Difference between revisions of "Darboux function"

From specialfunctionswiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Darboux function is continuous]]<br />
<strong>Theorem:</strong> The Darboux function is [[continuous]] on $\mathbb{R}$.
+
[[Darboux function is nowhere differentiable]]<br />
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
=References=
<strong>Theorem:</strong> The Darboux function is [[nowhere differentiable]] on $\mathbb{R}$.
+
* {{BookReference|Continuous Nowhere Differentiable Functions|2003|Johan Thim|prev=findme|next=Schwarz function}} $\S 3.5$, pg. 28
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
=References=
+
{{:Continuous nowhere differentiable functions footer}}
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br />
 
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 18:02, 25 June 2017

The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.

Properties

Darboux function is continuous
Darboux function is nowhere differentiable

References

Continuous nowhere differentiable functions