Difference between revisions of "Reciprocal Fibonacci constant"
From specialfunctionswiki
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
The reciprocal Fibonacci constant $\psi$ is | The reciprocal Fibonacci constant $\psi$ is | ||
− | $$\psi = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{ | + | $$\psi = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{F(k)}=3.35988566624317755\ldots,$$ |
− | where $ | + | where $F(k)$ is is the $k$th [[Fibonacci numbers|Fibonacci number]]. |
=Properties= | =Properties= |
Latest revision as of 03:40, 25 June 2017
The reciprocal Fibonacci constant $\psi$ is $$\psi = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{F(k)}=3.35988566624317755\ldots,$$ where $F(k)$ is is the $k$th Fibonacci number.
Properties
The reciprocal Fibonacci constant is irrational
See also
Fibonacci numbers
Fibonacci zeta function