Difference between revisions of "Pythagorean identity for tanh and sech"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\mathrm{tanh}^2(z)+\mathrm{sech}^2(z)=1,$$ where $\mathrm{tanh}$ denotes the hyperbolic tangent and $\mathrm{sech}$ denotes...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for sinh and cosh|next=findme}}: $4.5.17$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for sinh and cosh|next=Pythagorean identity for coth and csch}}: $4.5.17$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:26, 21 October 2017

Theorem

The following formula holds: $$\mathrm{tanh}^2(z)+\mathrm{sech}^2(z)=1,$$ where $\mathrm{tanh}$ denotes the hyperbolic tangent and $\mathrm{sech}$ denotes the hyperbolic secant.

Proof

References