Difference between revisions of "Integral representation of Struve function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $\mathrm{Re}(\nu) > - \dfrac{1}{2}$: $$\mathbf{H}_{\nu}(z) = \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displayst...")
 
 
Line 2: Line 2:
 
The following formula holds for $\mathrm{Re}(\nu) > - \dfrac{1}{2}$:
 
The following formula holds for $\mathrm{Re}(\nu) > - \dfrac{1}{2}$:
 
$$\mathbf{H}_{\nu}(z) = \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^1 (1-t^2)^{\nu-\frac{1}{2}} \sin(zt) \mathrm{d}t,$$
 
$$\mathbf{H}_{\nu}(z) = \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^1 (1-t^2)^{\nu-\frac{1}{2}} \sin(zt) \mathrm{d}t,$$
where $\mathbf{H}_{\nu}$ denotes the [[Struve function]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma] function, and $\sin$ denotes [[sine]].
+
where $\mathbf{H}_{\nu}$ denotes the [[Struve function]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma]] function, and $\sin$ denotes [[sine]].
  
 
==Proof==
 
==Proof==

Latest revision as of 16:11, 4 November 2017

Theorem

The following formula holds for $\mathrm{Re}(\nu) > - \dfrac{1}{2}$: $$\mathbf{H}_{\nu}(z) = \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^1 (1-t^2)^{\nu-\frac{1}{2}} \sin(zt) \mathrm{d}t,$$ where $\mathbf{H}_{\nu}$ denotes the Struve function, $\pi$ denotes pi, $\Gamma$ denotes the gamma function, and $\sin$ denotes sine.

Proof

References