Difference between revisions of "Orthogonality relation for cosine on (0,pi)"

From specialfunctionswiki
Jump to: navigation, search
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|An Introduction to Orthogonal Polynomials|1978|T.S. Chihara|prev=2cos(mt)cos(nt)=cos((m+n)t)+cos((m-n)t)|next=findme}} $(1.2)$
+
* {{BookReference|An Introduction to Orthogonal Polynomials|1978|T.S. Chihara|prev=2cos(mt)cos(nt)=cos((m+n)t)+cos((m-n)t)|next=Orthogonality of Chebyshev T on (-1,1)}} $(1.2)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:52, 19 December 2017

Theorem

The following formula holds for $m,n \in \{0,1,2,\ldots\}$ with $m\neq n$: $$\displaystyle\int_0^{\pi} \cos(mt)\cos(nt) \mathrm{d}t=0,$$ where $\cos$ denotes cosine.

Proof

References