Difference between revisions of "Kelvin kei"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
<center>{{:Kelvin functions footer}}</center>

Revision as of 03:29, 21 August 2015

The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.

<center>Kelvin functions
</center>