Difference between revisions of "Kelvin kei"

From specialfunctionswiki
Jump to: navigation, search
Line 5: Line 5:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Domcolkelvinkeisub0.png|[[Domain coloring]] of $\mathrm{kei}_0$.
+
File:Complexkelvinkei,n=0plot.png|[[Domain coloring]] of $\mathrm{kei}_0$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>

Revision as of 01:14, 11 June 2016

The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}_{\nu}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.

Kelvin functions