Difference between revisions of "Kelvin kei"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=Properties=
 +
 +
=References=
 +
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Kelvin ker|next=findme}}: $\S 7.2.3 (19)$
  
 
{{:Kelvin functions footer}}
 
{{:Kelvin functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 22:19, 8 July 2016

The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}_{\nu}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.

Properties

References

Kelvin functions