Difference between revisions of "Kelvin ker"
From specialfunctionswiki
Line 5: | Line 5: | ||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> | ||
+ | File:Kelvinker,n=0plot.png|Graph of $\mathrm{ker}_0$. | ||
File:Complexkelvinker,n=0plot.png|[[Domain coloring]] of $\mathrm{ker}_0$. | File:Complexkelvinker,n=0plot.png|[[Domain coloring]] of $\mathrm{ker}_0$. | ||
</gallery> | </gallery> |
Revision as of 20:35, 9 July 2016
The $\mathrm{ker}_{\nu}$ function is defined as $$\mathrm{ker}_{\nu}(z)=\mathrm{Re} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Re}$ denotes the real part of a complex number and $K_{\nu}$ denotes the modified Bessel function $K_{\nu}$.
Domain coloring of $\mathrm{ker}_0$.
Properties
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume II ... (previous) ... (next): $\S 7.2.3 (20)$