Difference between revisions of "Kelvin ker"

From specialfunctionswiki
Jump to: navigation, search
Line 5: Line 5:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
 +
File:Kelvinker,n=0plot.png|Graph of $\mathrm{ker}_0$.
 
File:Complexkelvinker,n=0plot.png|[[Domain coloring]] of $\mathrm{ker}_0$.
 
File:Complexkelvinker,n=0plot.png|[[Domain coloring]] of $\mathrm{ker}_0$.
 
</gallery>
 
</gallery>

Revision as of 20:35, 9 July 2016

The $\mathrm{ker}_{\nu}$ function is defined as $$\mathrm{ker}_{\nu}(z)=\mathrm{Re} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Re}$ denotes the real part of a complex number and $K_{\nu}$ denotes the modified Bessel function $K_{\nu}$.

Properties

References

Kelvin functions