Difference between revisions of "Fibonacci zeta function"

From specialfunctionswiki
Jump to: navigation, search
Line 15: Line 15:
 
* {{PaperReference|The Fibonacci Zeta Function|1976|Maruti Ram Murty|prev=Fibonacci sequence|next=Binet's formula}}  
 
* {{PaperReference|The Fibonacci Zeta Function|1976|Maruti Ram Murty|prev=Fibonacci sequence|next=Binet's formula}}  
 
[http://cc.oulu.fi/~tma/TAPANI20.pdf]<br />
 
[http://cc.oulu.fi/~tma/TAPANI20.pdf]<br />
 +
[http://www.fq.math.ca/Scanned/39-5/navas.pdf]<br />
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 10:00, 13 October 2016

The Fibonacci zeta function is defined by $$F(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{F_n^z},$$ where $f_n$ denotes the $n$th term in the Fibonacci sequence.

Properties

Fibonacci zeta in terms of a sum of binomial coefficients
Fibonacci zeta at 1 is irrational
Fibonacci zeta is transcendental at positive even integers

See Also

Fibonacci sequence
Reciprocal Fibonacci constant

References

[1]
[2]