Difference between revisions of "Limit of quotient of consecutive Fibonacci numbers"
From specialfunctionswiki
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
The following formula holds: | The following formula holds: | ||
− | $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F(n+1)}{F(n)}=\ | + | $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F(n+1)}{F(n)}=\varphi,$$ |
− | where $F(n)$ denotes the $n$th [[Fibonacci numbers|Fibonacci number]] and $\ | + | where $F(n)$ denotes the $n$th [[Fibonacci numbers|Fibonacci number]] and $\varphi$ denotes the [[golden ratio]]. |
==Proof== | ==Proof== |
Latest revision as of 23:53, 6 June 2017
Theorem
The following formula holds: $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F(n+1)}{F(n)}=\varphi,$$ where $F(n)$ denotes the $n$th Fibonacci number and $\varphi$ denotes the golden ratio.