Difference between revisions of "Pythagorean identity for tanh and sech"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\mathrm{tanh}^2(z)+\mathrm{sech}^2(z)=1,$$ where $\mathrm{tanh}$ denotes the hyperbolic tangent and $\mathrm{sech}$ denotes...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for sinh and cosh|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Pythagorean identity for sinh and cosh|next=Pythagorean identity for coth and csch}}: $4.5.17$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:26, 21 October 2017
Theorem
The following formula holds: $$\mathrm{tanh}^2(z)+\mathrm{sech}^2(z)=1,$$ where $\mathrm{tanh}$ denotes the hyperbolic tangent and $\mathrm{sech}$ denotes the hyperbolic secant.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.17$