Difference between revisions of "Kelvin kei"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $\mathrm{kei}_{\nu}$ function is defined as
 
The $\mathrm{kei}_{\nu}$ function is defined as
$$\mathrm{kei}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$
+
$$\mathrm{kei}_{\nu}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$
 
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]].
 
where $\mathrm{Im}$ denotes the [[imaginary part]] of a [[complex number]] and $K_{\nu}$ denotes the [[Modified Bessel K sub nu|modified Bessel $K_{\nu}$]].
  

Revision as of 03:30, 21 August 2015

The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}_{\nu}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.

<center>Kelvin functions
</center>