Difference between revisions of "Kelvin kei"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
  
 
<center>{{:Kelvin functions footer}}</center>
 
<center>{{:Kelvin functions footer}}</center>
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:37, 24 May 2016

The $\mathrm{kei}_{\nu}$ function is defined as $$\mathrm{kei}_{\nu}(z)=\mathrm{Im} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $K_{\nu}$ denotes the modified Bessel $K_{\nu}$.

<center>Kelvin functions
</center>